How to Make an lSTM Model with Multiple Inputs

Creating an LSTM model with multiple inputs involves integrating the inputs into a structure compatible with the model architecture. Here’s a step-by-step guide using Python and TensorFlow/Keras:


1. Understand Your Inputs

  • Multiple sequences: Example, two separate time series like temperature and stock price.
  • Mixed data types: Time series combined with static data like categorical features.

2. Preprocess Your Data

  • Normalize or scale numerical data.
  • One-hot encode categorical data (if applicable).
  • Shape your sequence data as (samples, timesteps, features).

3. Define the LSTM Model

You can use the Functional API or Sequential API in Keras.


Example: LSTM Model with Two Inputs

Assume we have:

  1. A time series input of shape (timesteps, features).
  2. A static input (e.g., categorical data) of shape (features,).

Python

import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, LSTM, Dense, Concatenate

Input 1: Time series data
input_seq = Input(shape=(30, 10))  # 30 timesteps, 10 features
lstm_out = LSTM(64, return_sequences=False)(input_seq)

Input 2: Static data
input_static = Input(shape=(5,))  # 5 static features
dense_static = Dense(32, activation='relu')(input_static)

Combine both inputs
combined = Concatenate()([lstm_out, dense_static])

Add final Dense layers
output = Dense(64, activation='relu')(combined)
output = Dense(1, activation='sigmoid')(output)  # Binary classification example

Define the model
model = Model(inputs=[input_seq, input_static], outputs=output)

Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

Summary of the model
model.summary()

4. Prepare Data for the Model

Ensure the data matches the input shapes defined in the model:

python

Example data
import numpy as np
time_series_data = np.random.random((1000, 30, 10))  # (samples, timesteps, features)
static_data = np.random.random((1000, 5))           # (samples, features)
labels = np.random.randint(0, 2, size=(1000,))     # Binary labels

Train the model
model.fit([time_series_data, static_data], labels, epochs=10, batch_size=32)

5. Considerations

  • Adjust the number of features, timesteps, and layers based on your data.
  • If the inputs are independent, you can train separate LSTM models and concatenate outputs.

This approach shared by hire tech firms allows flexibility in incorporating multiple types of input into a single LSTM-based architecture. Let me know if you’d like a different variation or additional details!